质谱仪是一种很好的定性鉴定用仪器,在有机质谱仪中,除激光解吸电离-飞行时间质谱仪和傅立叶变换质谱仪之外,所有质谱仪都是和气相色谱或液相色谱组成联用仪器。
这样,使质谱仪无论在定性分析还是在定量分析方面都十分方便。同时,为了增加未知物分析的结构信息,为了增加分析的选择性,采用串联质谱法(质谱-质谱联用),也是目前质谱仪发展的一个方向。
也就是说,目前的质谱仪是以各种各样的联用方式工作的。
质量分析器种类很多,最常用的是四极杆分析器(简写为Q),其次是离子阱分析器(Trap)和飞行时间分析器(TOF)。
为了增加结构信息,大多采用具有串联质谱功能的质量分析器,串联方式很多,如Q-Q-Q,Q-TOF等。
为了得到更多的有关分子离子和碎片离子的结构信息,早期的质谱工作者把亚稳离子作为一种研究对象。
所谓亚稳离子(metastable ion)是指离子源出来的离子,由于自身不稳定,前进过程中发生了分解,丢掉一个中性碎片后生成的新离子,这个新的离子称为亚稳离子。
这个过程可以表示为:m1+m2+ +N , 新生成的离子在质量上和动能上都不同于m1+ , 由于是在行进中途形成的,它也不处在质谱中m2的质量位置。
研究亚稳离子对搞清离子的母子关系,对进一步研究结构十分有用。于是,在双聚焦质谱仪中设计了各种各样的磁场和电场联动扫描方式,以求得到子离子,母离子和中性碎片丢失。
尽管亚稳离子能提供一些结构信息,但是由于亚稳离子形成的几率小,亚稳峰太弱,检测不容易,而且仪器操作也困难,因此,后来发展成在磁场和电场间加碰撞活化室,人为地使离子碎裂,设法检测子离子,母离子,进而得到结构信息。这是早期的质谱-质谱串联方式。
随着仪器的发展,串联的方式越来越多。尤其是20世纪80年代以后出现了很多软电离技术,如ESI、APCI、FAB、MALDI等,基本上都只有准分子离子,没有结构信息,更需要串联质谱法得到结构信息。因此,近年来,串联质谱法发展十分迅速。
空间串联
是两个以上的质量分析器联合使用,两个分析器间有一个碰撞活化室,目的是将前级质谱仪选定的离子打碎,由后一级质谱仪分析。
而时间串联质谱仪只有一个分析器,前一时刻选定-离子,在分析器内打碎后,后一时刻再进行分析。
质谱-质谱的串联方式很多,既有空间串联型,又有时间串联型。
空间串联型又分磁扇型串联,四极杆串联,混合串联等。如果用B表示扇形磁场,E表示扇形电场,Q表示四极杆,TOF表示飞行时间分析器。
无论是哪种方式的串联,都必须有碰撞活化室,从第一级MS分离出来的特定离子,经过碰撞活化后,再经过第二级MS进行质量分析,以便取得更多的信息。
1、三级四极质谱仪(Q-Q-Q)的工作方式和主要信息
三级四极质谱仪有三组四极杆,第一组四级杆用于质量分离(MS1),第二组四极杆用于碰撞活化(CAD),第三组四极杆用于质量分离(MS2)。主要工作方式有四种。
a为子离子扫描方式,这种工作方式由MSI选定-质量,CAD碎裂之后,由MS2扫描得子离子谱。
b为母离子扫描方式,在这种工作方式,由MS2选定一个子离子,MS1扫描,检测器得到的是能产生选定子离子的那些离子,即母离子谱。
C是中性丢失谱扫描方式,在这种方式是MS1和MS2同时扫描。只是二者始终保持一定固定的质量差(即中性丢失质量),只有满足相差-固定质量的离子才得到检测。
d是多离子反应监测方式,由MS1选择一个或几个特定离子(图中只选一个),经碰撞碎裂之后,由其子离子中选出一特定离子,只有同时满足MS1和MS2选定的一对离子时,才有信号产生。
用这种扫描方式的好处是增加了选择性,即便是两个质量相同的离子同时通过了MS1,但仍可以依靠其子离子的不同将其分开。这种方式非常适合于从很多复杂的体系中选择某特定质量,经常用于微小成分的定量分析。
离子阱质谱仪的MS-MS属于时间串联型,它的操作方式见上图。
在A阶段,打开电子门此时基础电压置于低质量的截止值,使所有的离子被阱集,然后利用辅助射频电压抛射掉所有高于被分析母离子的离子。
进入B阶段,增加基频电压,抛射掉所有低于被分析母离子的离子。以阱集即将碰撞活化的离子。
在C阶段,利用加在端电极上的辅助射频电压激发母离子,使其与阱内本底气体碰撞。
在D阶段,扫描基频电压,抛射并接收所有CID过程形成的子离子,获得子离子谱。以此类推,可以进行多级MS分析。
由离子阱的工作原理可以知道,它的MS-MS功能主要是多级子离子谱,利用计算机处理软件,还可以提供母离子谱,中性丢失谱和多反应监测(MRM)。
FTMS的扫描方式是依据快速扫频脉冲对所有离子“同时”激发。
具有MS-MS功能的FTMS,其快速扫频脉冲可以选择性的留下频率“缺口”,用频率“缺口”选择性的留下欲分析的母离子,其它离子被激发并抛射到接收极。然后使母离子受激,使其运动半径增大又控制其轨道不要与接收极相撞。
此时母离子在室内与本底气体或碰撞气体碰撞产生子离子。然后再改变射频频率接收子离子。还可由子离子谱中选一个离子再做子离子谱。由于离子损失很少。因此,FTMS可以做到5-6级子离子谱。
离子在飞行过程中如果发生裂解,新产生的离子仍然以母离子速度飞行。因此在直线型漂移管中观测不到新生成的离子。如果采用带有反射器的漂移管,因为新生成的离子与其母离子动能不同,可在反射器中被分开。这种操作方式称为源后裂解(Post source decomposition ,PSD)。通过PSD操作可以得到结构信息。因此,可以认为反射型TOFMS也具有MS-MS功能。
另外TOF-TOF串联质谱仪已经出现。关于磁式质谱仪串联和混合型串联,咱们后续再进行相应的介绍。
QMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。
优点:
结构简单、成本低;维护简单;SIM功能的定量能力强;是多数检测标准中采用的仪器设备。
缺点:
无串极能力,定性能力不足;分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰;速度慢;质量上限低(小于1200u)。
TOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。
优点:
分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子;速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC);质量上限高(6000~10000u);
缺点:
无串极功能,限制了进一步的定性能力;售价高于QMS;较精密,需要认真维护。
QQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。
优点:
有串极功能,定性能力强;定量能力非常好,MRM信噪比高于QMS的SIM;是常用的QMS结果确认仪器;除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行)对特征基团的结构研究有很大帮助.
缺点:
分辨力不足,容易受m/z近似的离子干扰;售价较高;需要认真维护.
技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能.
优势:
同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析.
缺点:
分辨力还是低了点.
优点:
相对于传统3D离子阱,灵敏度高10倍以上;多级串级质谱.
缺点:
相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能.
QTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。
优点:
能够提供高分辨谱图;定性能力好于QQQ;速度快,适合于生命科学的大分子量复杂样品分析.
缺点:
成本高;需要仔细维护.
以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力
优点:
同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性.
缺点:
由于离子阱容量限制,对于混合样品的灵敏度欠佳;定量能力弱.
磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。
优点:
技术经典、成熟,NIST等MS库采用的仪器;分辨力非常好(100k,m/&Delta m FWHM),干扰少;灵敏度高,定量能力是各种质谱中最好的.
缺点:
体积、重量大;售价很高;速度慢;维护复杂,很费电.
据说是质谱中的贵族,质量精度超级好,几个月都不需要校正。但是价格也是贵的让人心寒啊。
傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备。
优点:
能够做多级串级,定性能力极好;分辨力极高;灵敏度很好;
缺点:
体积重量大;售价极高;速度也较慢;维护费用非常昂贵.
优点:
高分辨,60k~120kFWHM,质量精度高;相对FT-ICR而言,价格稍低(~450kUSD);
缺点:
不能单独做串级;分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
加载更多