很多小伙伴对于光谱并不是很了解。今天小编和大家一起学习下什么是光谱,光谱能够发挥怎么样的作用。光是我们唯一可以看见的能量,我们以颜色的形式看到它。材料分析方法对于建立材料组织结构和性能之间的联系具有重要作用。当将光谱应用到材料分析时会有哪些惊喜呢?跟小析姐一起来看看吧。很多小伙伴对于光谱并不是很了解。今天小编和大家一起学习下什么是光谱,光谱能够发挥怎么样的作用。光是我们唯一可以看见的能量,我们以颜色的形式看到它。材料分析方法对于建立材料组织结构和性能之间的联系具有重要作用。当将光谱应用到材料分析时会有哪些惊喜呢?跟小析姐一起来看看吧。
01光谱
光谱,就是光学频谱的简称,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。
02光谱学
光谱学(Spectroscopy)是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。在化学中,光谱学被用来寻找新元素。时至今日,红外光谱法仍在化学分析中被广泛使用。 在天文学中,光谱学使我们能够弄清楚太阳和恒星的组成元素,它是天文学家工具箱中功能最强的工具。物理学是光谱学产出成果最多的领域,光谱学直接导致了量子力学的发展。光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。在光的作用下,你并不是直接看到了分子(即它的内部实质)而是它的“灵魂”。你观察的是光与不同自由度的分子之间的作用。每种类型的光谱(不同的光频率)给出不同的图像。
03光谱分类
按照光与物质的作用形式,光谱一般可分为吸收光谱、发射光谱和散射光谱等。
图4a:吸收光谱跃迁
图4b:发射光谱跃迁
04材料光谱分析是什么?
光谱分析是基于待测物质发射的电磁辐射信号或电磁辐射能量与待测物质相互作用后所产生的电磁辐射信号与材料组成及结构关系所建立起来的分析方法。涉及物质的能量状态、状态跃迁以及跃迁强度等方面。
05光波与物质的相互作用
光波是波长在0.2到20微米之间的电磁波,即紫外、可见、红外(包括远红外)合称光学光谱区。X射线的波长为1pm到10 nm。
06基本材料光谱分析方法
分为吸收光谱、发射光谱、散射光谱(拉曼散射谱)。
07材料光谱分析基本原理
材料原子光谱分析
(1)原子发射光谱(AES)
被测样品用适当的激发光源激发,样品中的原子就会辐射出特征光,经外光路照明系统聚焦,再经准直系统使之成为平行光,后经色散元件把复合光按波长展谱,最后经感光板处理,得到样品的特征发射光谱。一定条件下元素特征谱线的强度随元素在样品中的含量、浓度的增大而增强,进行元素的半定量、定量分析。
(2)原子吸收光谱(AAS)
从光源辐射出的具有待测元素特征谱线的光,通过样品蒸气时被蒸气中待测元素基态原子所吸收,从而由辐射特征谱线光被减弱的程度来测定样品中待测元素含量的方法。又称为原子吸收分光光度法,可进行定量分析。
(3)原子荧光光谱(AFE)
以原子在辐射能激发下发射的荧光辐射强度进行定量分析的发射光谱分析法。样品原子蒸气被强光源发射的光辐射照射,气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级然后返回低能级同时发射出与原激光辐射波长相同或不同的辐射,为原子荧光(二次发光)。当激发光源停止照射,发射过程停止。
材料分子光谱分析
(1)紫外-可见光吸收光谱(UV-VIS)
UV、VIS是分子外层电子在电子能级间跃迁而产生的,又称为电子光谱。在电子能级跃迁的同时伴有振动能级与转动能级的跃迁,电子能级跃迁产生的紫外、可见光谱中包含有振动、转动能级跃迁产生的谱线,分子的紫外、可见光谱是由谱线非常接近甚至重叠的吸收带组成的带状光谱。
(2)红外吸收光谱(IR)
物质在红外辐射作用下分子振动能级跃迁(由振动基态向振动激发态)而产生的。同时伴有分子转动能级跃迁,又称振-转光谱,由吸收带组成的带状光谱。是利用物质对不同波长红外光的吸收程度进行研究物质分子的组成及结构的方法。
(3)荧光、磷光光谱
分子受光能激发后,由第一电子激发单重态跃迁回到基态的任一振动能级时所发出的光辐射,称为分子荧光。激发态分子从第一电子激发态三重态跃迁回到基态时所发出的光辐射称为磷光。荧光和磷光为分子常见的光致发光现象。
08拉曼光谱分析法
光照射到物质上会发生非弹性散射,散射光中除有与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长的和短的成分,后者称为拉曼效应。
拉曼效应:光子同分子碰撞产生的光散射效应。
拉曼散射:样品分子与激发光相互作用产生的非弹性散射,光的方向改变而且有能量交换。把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。拉曼光谱是散射光谱。拉曼散射有stokes散射与反stokes散射。
图10
瑞利散射最强,stokes线强度次之,反stokes线最弱。拉曼位移是拉曼散射光与入射光频率差Δ。对不同物质Δ不同,对同一物质,Δ与入射光频率无关。拉曼散射的产生:光电场E中,分子产生诱导偶极矩。拉曼活性振动是伴随着有极化率变化的振动,
拉曼光谱与红外光谱都是振动光谱,拉曼散射是散射光谱,红外光谱是吸收光谱。红外光谱与拉曼光谱是互补的,对于对称分子,对称振动是拉曼活性的,反对称振动是红外活性的。红外光谱主要用于基团的检测,拉曼光谱主要用于骨架的测定。拉曼位移与红外吸收峰完全对应。拉曼散射比红外光谱强度更弱,因此要采用强光源。
表1
拉曼光谱范围非常大,因此可以用来检测无机物质。拉曼光谱要求对激发光透明,极化率大。拉曼光谱与红外光谱合称为振动光谱,二者互补。
拉曼光谱仪:
光源:氮氛激光器,激光波长要尽可能小,来获得更强的拉曼散射。
单色器:光栅
检测器:光电倍增管,光电子计数器。
图11 激光拉曼光谱仪示意图
展源
何发
2021-01-11
2020-05-27
2020-05-27
2024-03-06
2020-05-27
2020-05-27
2020-05-27
2021-01-12
2024-02-21
2020-05-27
加载更多