电化学测试主要分为三个部分:
(1)充放电测试,主要看电池充放电性能和倍率等;
(2)循环伏安,主要是看电池的充放电可逆性,峰电流,起峰位;
(3)EIS交流阻抗,看电池的电阻和极化等。
下面就锂电综合研究中用到的表征手段进行简单的介绍,大概分为八部分来讲:成分表征、形貌表征、晶体结构表征、物质官能团的表征、材料离子运输的观察、材料的微观力学性质、材料表面功函数和其他实验技术。
成分表征
1、电感耦合等离子体(ICP)
用来分析物质的组成元素及各种元素的含量。ICP-AES可以很好地满足实验室主、次、痕量元素常规分析的需要;ICP-MS相比ICP-AES是近些年新发展的技术,仪器价格更贵,检出限更低,主要用于痕量/超痕量分析。
2、二次离子质谱(SIMS)
通过发射热电子电离氩气或氧气等离子体轰击样品的表面,探测样品表面溢出的荷电离子或离子团来表征样品成分。可以对同位素分布进行成像,表征样品成分;探测样品成分的纵向分布。
3、X射线光子能谱(XPS)
由瑞典Uppsala大学物理研究所Kai Siegbahn教授及其小组在20 世纪五六十年代逐步发展完善。X射线光电子能谱不仅能测定表面的组成元素,而且还能给出各元素的化学状态信息,能量分辨率高,具有一定的空间分辨率(目前为微米尺度)、时间分辨率(分钟级)。用于测定表面的组成元素、给出各元素的化学状态信息。
4、电子能量损失谱(EELS)
利用入射电子引起材料表面电子激发、电离等非弹性散射损失的能量,通过分析能量损失的位置可以得到元素的成分。EELS相比EDX对轻元素有更好的分辨效果,能量分辨率高出1~2个量级,空间分辨能力由于伴随着透射电镜技术,也可以达到10−10 m的量级,同时可以用于测试薄膜厚度,有一定时间分辨能力。通过对EELS谱进行密度泛函(DFT)的拟合,可以进一步获得准确的元素价态甚至是电子态的信息。
5、扫描透射X射线显微术(STXM)
基于第三代同步辐射光源以及高功率实验室X 光源、X射线聚焦技术的新型谱学显微技术。采用透射X 射线吸收成像的原理,STXM 能够实现具有几十个纳米的高空间分辨的三维成像,同时能提供一定的化学信息。STXM 能够实现无损伤三维成像,对于了解复杂电极材料、固体电解质材料、隔膜材料、电极以及电池可以提供关键的信息,而且这些技术可以实现原位测试的功能。
6、X射线吸收近边谱(XANES)
是标定元素及其价态的技术,不同化合物中同一价态的同一元素对特定能量X射线有高的吸收,我们称之为近边吸收谱。在锂电池领域中,XAS主要用于电荷转移研究,如正极材料过渡金属变价问题。
7、X射线荧光光谱分析(XRF)
利用初级X射线光子或其它微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。XRF被工业界广泛应用于锂离子电池材料主成分及杂质元素分析。对某些元素检出限可以达到10-9的量级。
形貌表征
1、扫描电镜(SEM)
收集样品表面的二次电子信息,反应样品的表面形貌和粗糙程度,带有EDS配件的SEM可以进一步分析元素种类、分布以及半定量的分析元素含量。虽然SEM的分辨率远小于TEM,但它仍是表征电池材料的颗粒大小和表面形貌的最基本的工具
2、透射电镜(TEM)
材料的表面和界面的形貌和特性,在关于表面包覆以及阐述表面SEI的文献中多有介绍。TEM也可以配置能谱附件来分析元素的种类、分布等。与SEM相比TEM能观察到更小的颗粒,并且高分辨透射电镜可以对晶格进行观察,原位TEM的功能更加强大,在TEM电镜腔体中组装原位电池,同时借助于TEM的高分辨特性,对电池材料在循环过程中的形貌和结构演化进行实时的测量和分析
3、原子力显微镜(AFM)
纳米级平整表面的观察,在碳材料的表征中使用较多。
晶体结构表征
1、X射线衍射技术(XRD)
通过XRD,可以获得材料的晶体结构、结晶度、应力、结晶取向、超结构等信息,还可以反映块体材料平均晶体结构性质,平均的晶胞结构参数变化,拟合后可以获取原子占位信息
2、扩展X射线吸收精细谱(EXAFS)
通过X 射线与样品的电子相互作用,吸收部分特定能量的入射光子,来反映材料局部结构差异与变化的技术,具有一定的能量和时间分辨能力,主要获得晶体结构中径向分布、键长、有序度、配位数等信息;通常需要同步辐射光源的强光源来实现EXAFS 实验。
3、中子衍射(ND)
当锂离子电池材料中有较大的原子存在时,X 射线将难以对锂离子占位进行精确的探测。中子对锂离子电池材料中的锂较敏感,因此中子衍射在锂离子电池材料的研究中发挥着重要作用。
4、核磁共振(NMR)
NMR具有高的能量分辨、空间分辨能力,能够探测材料中的化学信息并成像,探测枝晶反应、测定锂离子自扩散系数、对颗粒内部相转变反应进行研究。
5、球差校正扫描透射电镜(STEM)
用途:用来观察原子的排布情况、原子级实空间成像,可清晰看到晶格与原子占位;对样品要求高;可以实现原位实验
6、Raman
早期用拉曼光谱研究LiC0O2的晶体结构,LiC0O2中有两种拉曼活性模式,Co—O伸缩振动Alg的峰与O—Co—O的弯曲振动Eg的峰。也多用于锂离子电池中碳材料石墨化程度的表征分析。
官能团的表征
官能团又称官能基、功能团,是决定有机化合物化学性质的原子和原子团。常见官能团有烃基、含卤素取代基、含氧官能基、含氮官能基以及含磷、硫官能团5 种。
1、拉曼光谱(RS)
由印度物理学家拉曼在单色光照射液体苯后散射出的与入射光频率不同谱线的实验中发现的,从拉曼光谱可以得到分子振动和转动的信息。拉曼光谱适用于对称结构极性较小的分子,例如对于全对称振动模式的分子,在激发光子的作用下,会发生分子极化,产生拉曼活性,而且活性很强。
在锂离子电池电极材料表征时,由于拆卸和转移过程难免人为或气氛原因对电极材料造成干扰,因此原位技术与拉曼光谱一起用在了电极材料的表征上。拉曼光谱对于材料结构对称性、配位与氧化态非常敏感,可用于测量过渡金属氧化物。
对于拉曼光谱的灵敏度不够的情况,可以使用一些Au和Ag等金属在样品表面进行处理,由于在这些特殊金属的导体表面或溶胶内靠近样品表面电磁场的增强导致吸附分子的拉曼光谱信号增强,称之为表面增强拉曼散射(SERS)。
2、傅里叶变换红外光谱(FT-IS)
红外光谱使用的波段与拉曼类似,不少拉曼活性较弱的分子可以使用红外光谱进行表征,红外光谱也可作为拉曼光谱的补充,红外光谱也称作分子振动光谱,属于分子吸收光谱。
依照红外光区波长的不同可以将红外光区分为三个区域:
① 近红外区,即泛频区,指的是波数在4000 cm−1以上的区域,主要测量O—H、C—H、N—H键的倍频吸收;
② 中红外区,即基本振动区,波数范围在400~4000 cm−1,也是研究和应用最多的区域,主要测量分子振动和伴随振动;
③ 远红外区,即分子振动区,指的是波数在400 cm−1以下的区域,测量的主要是分子的转动信息。
由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外光谱,通常红外光谱的样品需要研磨制成KBr的压片。
通常红外光谱的数据需要进行傅里叶变换处理,因此红外光谱仪和傅里叶变化处理器联合使用,称为傅里叶红外光谱(FITR)。在锂离子电池电解液的研究中,使用红外光谱手段的工作较多。
3、深紫外光谱(UV)
主要用于溶液中特征官能团的分析
材料离子运输的现象
1、中子衍射(ND)
结合最大熵模拟分析方法可以得到电极材料中的Li+扩散通道的信息。
2、核磁共振(NMR)
测得一些元素的核磁共振谱随热处理温度的变化,测得Li+的自扩散系数。
3、原子力显微镜系列技术(AFM)
利用针尖原子与样品表面原子间的范德华作用力来反馈样品表面形貌信息。AFM具备高的空间分辨率(约0.1Å)和时间分辨能力,由于它不探测能量,并不具有能量分辨能力,与1996年首次应用于锂离子电池研究中。
材料微观力学性质
电池材料一般为多晶,颗粒内部存在应力。在充放电过程中锂的嵌入脱出会发生晶格膨胀收缩,导致局部应力发生变化,进一步会引起颗粒以及电极的体积变化、应力释放、出现晶格堆垛变化、颗粒、电极层产生裂纹。
1、原子力显微镜系列技术(AFM)与纳米压印技术以及在TEM中与纳米探针、STM探针联合测试。
观察形貌特征,在采用固态电池时可以进行原位力学特性、应力的测量
材料表面功函数
1、开尔文探针力显微镜(KPFM)
通过探测表面电势对探针的作用力,来得到样品表面的电势分布。
2、电子全息
测到全固态锂离子电池充放电过程中电势的变化情况,得到不同体系下电势在界面的分布
3、光发射电子显微镜(PEEM)
用于得到表面电势的分布
除了上述表征手段,在实际的实验中,还会用到一些其他的表征技术,比如:
(1)角分辨光电子能谱(ARPES),用途:直接测量材料能带结构;
(2)DFT计算,用途:获得材料的电子结构;
(3)电子淹没技术(PAT),用途:测量缺陷结构和电子结构;
(4)卢瑟福背散射(RBS),用途:可以测量薄膜组成;
(5)共振非弹性X射线散射(RIXS),用途:研究原子问磁性相互作用;
(6)俄歇电子成像技术(AES),用途:直接探测颗粒、电极表面锂元素空间分布,通过Ar离子剥蚀还可进行元素深度分析等。
当然,在研究锂电时,电化学表征也是十分重要的,你知道哪些电化学表征技术吗,欢迎留言区给小析姐留言,我们一起进步,一起成长。
锂电前沿
展源
何发
2021-08-19
2021-04-01
2020-05-27
2020-05-27
2021-01-11
2020-05-27
2024-03-06
2020-05-27
2020-05-27
加载更多